Semi-Supervised Learning of Concatenative Morphology
نویسندگان
چکیده
We consider morphology learning in a semi-supervised setting, where a small set of linguistic gold standard analyses is available. We extend Morfessor Baseline, which is a method for unsupervised morphological segmentation, to this task. We show that known linguistic segmentations can be exploited by adding them into the data likelihood function and optimizing separate weights for unlabeled and labeled data. Experiments on English and Finnish are presented with varying amount of labeled data. Results of the linguistic evaluation of Morpho Challenge improve rapidly already with small amounts of labeled data, surpassing the state-ofthe-art unsupervised methods at 1000 labeled words for English and at 100 labeled words for Finnish.
منابع مشابه
Semi-supervised induction of a concatenative morphology with simple morphotactics A model in the Morfessor family
متن کامل
Advances in Weakly Supervised Learning of Morphology
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Oskar Kohonen Name of the doctoral dissertation Advances in Weakly Supervised Learning of Morphology Publisher School of Science Unit Department of Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 91/2015 Field of research Language Technology Manuscript submitted 19 January 2014 Date of the de...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010